
INTRODUCTION
Need for New GPS Satellite Instrumentation
The data from geophysics-grade GPS phase tracking receivers are cur-
rently used to determine receiving site coordinates with accuracies
approaching the millimeter precision of the observables, where the
ground observing site coordinates, the GPS orbit initial conditions, and
other parameters are simultaneously estimated to best fit the all-in-view
phase tracking data.[1]

Among the extra parameters estimated are those in a model of the GPS
nongravitational acceleration (~12 nano-g) due to radiation pressure
and outgassing. Nongravitational acceleration model inadequacy is a
limitation on the site coordinate and orbit fit accuracy obtainable, which
problem this paper proposes to circumvent by equipping the GPS satel-
lites with a 3-axis low-g accelerometer (or possibly three single-axis
accelerometers), and by the use of satellite-to-satellite phase tracking
and ranging observables.

Gyroscopes combined with existing earth and sun sensor data are
required to determine the satellite attitude, and hence the position of
the transmitting antenna phase center to millimeter accuracy, and to cor-
rect for centripetal and angular acceleration effects on the strapdown
accelerometers.

Inadequacy of the neutral atmosphere model is another limitation on
the site coordinate and orbit fit accuracies obtainable using only
ground-based observations. However, use of satellite-to-satellite phase
tracking and ranging observables works around this problem. GPS
observations from a network of ground sites can then estimate neutral
atmosphere characteristics for processing ground-based observations
and for input to, e.g., a Navier-Stokes weather prediction model of the
atmosphere.

General Relativity Effects
The average earth general relativity effect on GPS clock rate has always
been taken into account in the GPS architecture. In addition, the instan-
taneous earth and sun general relativity effects on GPS clock rate and on
orbital motion and radio signal propagation must be taken into account
to achieve global millimeter-level orbit and site coordinate determina-
tion, and light-time iterations should be done in the solar system
barycenter frame, as is done in processing centimeter accuracy lunar
laser observations.

Improved Estimation Procedure
The use of maximum likelihood system identification is advocated in the
orbit fitting and parameter estimation process, in which an extended
Kalman filter is run on the satellite position and velocity states to take
account of noise and unmodeled effects in the dynamics, and a maxi-
mum likelihood estimator is run on the orbit initial conditions, site coor-
dinates, atmosphere model parameters, accelerometer biases, clock
biases, and other parameters.

ABSTRACT
Millimeter-level accuracy applications of terrestrial Global
Positioning System (GPS) phase tracking can be done more
robustly with global rather than regional accuracy if the GPS
satellites are equipped with (1) accelerometers to measure rather
than model nongravitational accelerations, (2) satellite-to-satel-
lite phase tracking as well as ranging cross links to work around
inadequately modeled atmospheric propagation effects, and (3)
gyroscopes for better satellite attitude control. More complete
general relativity modeling is also needed in the orbit fitting and
site coordinate estimation process, for which it could be advanta-
geous to employ a combination of Kalman filtering on the orbital
motions and maximum likelihood estimation on the site coordi-
nates, accelerometer biases, and other parameters.
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Applications of Millimeter-Accuracy Satellite Orbit Fits
Applications include:
1. More accurate, robust, and global ground site coordinate

determination for, e.g., earthquake prediction and secular
change in height monitoring.

2. Real-time determination of neutral atmosphere water
vapor content for input to Navier-Stokes weather prediction
models.

3. Very accurate airborne gravimetry for, e.g., discovery of min-
eral deposits or mid-ocean gravity mapping away from dif-
ferential GPS reference sites.

4. Millimeter accuracy low-altitude satellite orbit determina-
tion using GPS observables for, e.g., improved estimates of
earth gravity harmonic coefficients and improved interpre-
tation of radar altimeter measurements.

5. Length-of-day and earth wobble monitoring at finer detail
between more expensive Very Long Baseline Inter-
ferometry (VLBI) observations of stellar sources. The GPS
approach is lower cost because the data are available for
free in Internet depositories from other applications.[1]

6. Autonomous GPS satellite operation.

All the above applications are being done currently (except
the last),[1] but could be done with greater robustness and
accuracy with the instrumentation proposed in this paper,
especially for global-scale applications.

SATELLITE ACCELEROMETERS 
Satellite Nongravitational Acceleration
The radiation pressure and outgassing accelerations on a GPS
satellite are of the order 12 nano-g, although somewhat larger
than this near the start of mission life when outgassing is larg-
er.[2] The air drag acceleration on a 120-km altitude satellite
that could be as large as 500 µg is reduced to 0.1 µg at a 400-
km altitude.[3] Thus, the accelerometer provided on low-alti-
tude satellites that observe GPS satellites would have a
different dynamic range from the accelerometer provided on
the GPS satellites.

The most accurate use of the GPS satellites would be with a
low-level accelerometer when the satellites are not thrusting.
Occasionally, orbit trim thrusts are done at mg-levels or higher.
A higher-level accelerometer for measuring these accelera-
tions could be useful for predicting through these events.

Low-Level Accelerometer Technology
A technology that has been flown in space to measure µg-level
nongravitational accelerations with nano-g resolution utilizes
a 3-degree-of-freedom electrostatically-supported proof mass.[4]

The electrostatic force required to keep the proof mass cen-
tered in the accelerometer case is the measure of nongravita-
tional acceleration, where the movement of the proof mass
relative to the case is detected electrostatically.

The scale factor of this macro-sized device can be increased by
more than an order of magnitude by using a uranium or lead
proof mass. The scale factor can be increased further by
decreasing the area of the electrostatic pads. In this manner,
the 12-nano-g nongravitational acceleration on the GPS satel-
lites can be read with several decimal places of accuracy.

Optical and other technologies for reading out the proof mass
position relative to the case and applying restoring forces
might yield a better performing low-g accelerometer.

Sources of Accelerometer Noise and Bias Instability
If the accelerometer proof mass is centered in a cavity in a vac-
uum, the only Brownian mechanical noise is due to noise in the
application of the restoring force and in other forces (see
below). The readout of the force applied is also a source of
noise, whereas noise in the detection of proof mass position is
probably not relevant for a low-bandwidth centering control
loop.

The bias in the readout of the force applied could vary with
time due to instabilities in the electronic components.
Variation in other forces on the proof mass is also a source of
bias instability, where these other forces are due to the unsym-
metric gravitational attraction from the parts of the spacecraft,
magnetic forces, and electric forces.

In order to eliminate magnetic forces, the proof mass should
be made of nonmagnetic material, and the accelerometer
should be shielded from magnetic fields. Proof mass charge
accumulation in the radiation environment of space could
lead to varying  bias electric forces on the proof mass. Changes
in the unsymmetric gravitational attraction of the parts of the
satellite on the proof mass as fuel is expended can be mod-
eled, or they can be minimized by having a torroidal fuel tank
around the center of mass of the satellite where the
accelerometer is located. A bladder symmetrically expanding
around the circumference of the torus eliminates fuel sloshing.

Note that a 1-kg mass at a 10-cm distance applies an accelera-
tion of 0.68 nano-g to the proof mass.

Accelerometer Noise Requirement
After appropriate high-rate sampling and digital filtering to
reduce force application readout noise, let the one-sided
acceleration power spectral density (PSD) of the accelerome-
ter have a white noise floor of A (m/s2)2/Hz at, say, 1 Hz and
below. If flicker noise or random walk due to bias instability
raised their heads above the white noise floor below the half-
orbital revolution frequency of 4.6 × 10-5 Hz, then separate
accelerometer biases could be solved for each orbital revolu-
tion, or perhaps a trend in bias estimated. Less precise solu-
tions would result if accelerometer biases had to be estimated
at fractional revolution intervals.

The velocity random walk resulting from this one-sided PSD
noise level is √(A/2) m/s/√s. The standard deviation of the
velocity noise grows as the square root of time, and the stan-
dard deviation of the position is one half this multiplied by
time to the 3/2 power. For ±half an orbital period of 6 h, the
position standard deviation due to white noise in acceleration
is 1.12 × 106√A m. Setting this equal to 1 mm yields the
requirement

√A  =  0.091 nano-g/√Hz (1)

An acceleration readout precision approaching 0.01 nano-g is
desirable.
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Accelerometer Calibration and Compensation
The accelerometer proof mass can be dithered at a frequency
incommensurate with disturbing acceleration frequencies to
calibrate the forcer scale factor relative to the displacement
readout scale factor, where the latter is known in terms of the
dimensions of the proof mass cavity.

A constant bias over an orbit-fitting interval (ideally at least
one 12-h orbital period) can be estimated when doing the
orbit fit, as can a bias trend over several orbit periods and
misalignments relative to the satellite frame if they were not
calibrated adequately before launch.

Any varying gravitational attraction on the accelerometer
proof mass from the parts of the satellite (such as due to fuel
expenditure or sloshing) has to be modeled and compensat-
ed, where the constant part of the satellite gravitational attrac-
tion can be absorbed into the bias calibration.

SATELLITE GYROSCOPES
Satellite Attitude Control
Satellite attitude is controlled using momentum wheels and
sun and earth sensors. Occasionally, momentum has to be
dumped using earth magnetic field torquing.

If gyroscopes were added to the sensor repertoire, the control
could be smoother and tighter, especially when the satellite
goes through earth shadow.

Attitudinal Motion Effects on a Strapdown Accelerometer
The GPS satellite rotates once every 12 h in order to keep its
antenna pointed at the earth (inertial angular velocity ω =
1.454 × 10-4 rad/s). If the accelerometer were at a distance r =
1 cm from the center of mass of the satellite, its centripetal
acceleration rω2 would be 0.02 nano-g, which should be cor-
rected in the strapdown accelerometer output before it is used
in integrating the satellite equations of motion.

Let satellite attitude angle deviation be ∆θ = A sin 2πft, where
A is the amplitude and f the frequency of control loop limit
cycling. The maximum angular velocity and acceleration
effects on the linear accelerometer output due to this limit
cycling are 4r(Aπf )2 and 4rA(πf )2, respectively.

Controlling with sun and earth sensors might have 0.1-deg
amplitude, 0.1-Hz limit cycling, whereas controlling with gyro-
scopes and sun and earth sensors might have 10-µrad ampli-
tude, 10-Hz limit cycling. The maximum angular velocity and
acceleration effects of this limit cycling on a linear accelerom-
eter at a distance r = 1 cm from the satellite center of mass are:

lin. acl. nano-g
due to w/out gyros with gyros

ang. vel. 1.23 0.40 

ang. acl. 703 40300

The centripetal acceleration (due to the effect of angular
velocity) rectifies and must be compensated for in the
accelerometer output, whereas the effect of oscillatory angu-
lar acceleration would tend to average zero. High-frequency
jitter from thruster firing and momentum wheel ball bearings

would make the angular acceleration effect worse, although
shock isolation would help.

The low-g accelerometer could be on a gyro-stabilized plat-
form to minimize angular acceleration effects, but there would
still be a lever arm effect due to offset from the satellite center
of mass. At a distance of r = 10 cm, a 0.1-deg attitude angle
motion would cause 0.17-mm motion of the accelerometer
proof mass relative to the case.

Thus, a solution to attitude control jitter causing large strap-
down linear accelerations (relative to the 12 nano-g dc accel-
eration) is to have adequate sway space for the accelerometer
proof mass relative to the case. The force rebalance proof mass
control loop can have low bandwidth, just as long as it keeps
the proof mass from hitting the case. The sway space could be
larger than a millimeter if the position of the satellite is taken
to be the offset of the proof mass from the center of the
accelerometer case, plus the result of the double integration of
the gravitational acceleration added to the proof mass restor-
ing force measure of nongravitational acceleration.

The low-g accelerometer should be as close to the satellite
center of mass as practicable, with the proof-mass sway space
and restoring servo-loop performance being tradeoffs in the
design. The accelerometer could be on 3-axis guide rails to
vernier adjust the location of the accelerometer if it is detect-
ed that satellite center of mass has shifted during the mission
lifetime.

Antenna Attitude Accuracy Requirement
For an antenna at a distance of 1 m from the satellite center of
mass, a 1-mm displacement of the antenna phase center is
caused by a 0.057-deg attitude angle error. The attitude either
has to be controlled to a fraction of this accuracy for what
could even be a larger lever arm, or the angle error has to be
telemetered to the ground.

The GPS umbra lasts 53 min, and umbra plus penumbra is dou-
ble that. The gyroscopes have to maintain attitude through
umbra and part of penumbra without help from the sun sen-
sor, so that 0.01-deg/h gyroscopes are required. There are a
number of reliable space-qualified gyroscopes with this per-
formance, but lesser cost 1-deg/h gyroscopes cannot be used.

Gyroscope Calibration
Away from shadow, the gyroscope biases and scale factors can
be calibrated simultaneously with controlling the satellite atti-
tude with the gyroscopes and the sun and earth sensors.

NEWTONIAN AND GENERAL RELATIVITY ORBIT AND TIME
MODELS
Newtonian Gravity and Force Model
Let x = (x1, x2, x3) be the vector position of a GPS satellite rela-
tive to the center of mass of the earth in an inertially oriented
coordinate frame (such as referred to the mean equinox and
equator of J2000.0), and let xj be the vector position of object j
(sun, moon, planets) relative to the center of mass of the earth.

The gravitational potential at the satellite is

(2)
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where G is the gravitational constant, M is the mass of the
earth with GM = 3.986013 × 105 km3/s2, Mj is the mass of
object j, and H is the potential due to higher harmonics in the
earth’s gravitational field (largest being J2). Lunar gravity har-
monics can also be included if necessary.

The constant C is specified in Section "Relation Between
Terrestrial Atomic Time and Coordinate Time" to make coordi-
nate time and sea level terrestrial atomic clocks run at the
same average rate. It has no effect on the equations of motion,
but does affect the general relativity equations for clock rate
and time delay.

Subtracting the Newtonian equations of motion of the earth
from those of the satellite yields equations for the satellite
position relative to the earth (i = 1, 2, 3):

(3)

where Ai is the measured nongravitational acceleration, Ri is
the general relativity effect given below, and where the last
perturbing body term is a tidal effect. The GPS satellite motion
equations are numerically integrated relative to the earth
rather than relative to the solar system barycenter for numeri-
cal reasons.

General Relativity Metric Tensor
Let = (x0, x1, x2, x3) be a general relativity coordinate system
with origin at the center of mass of the earth, where x0 = t is
coordinate time. The role of the gravitational potential is
played by the symmetric metric tensor ds2 = gµνdxµdxν (writ-
ten using the Einstein summation convention), whose compo-
nents satisfy the Einstein field equations (second-order
hyperbolic partial differential equations that imply the exis-
tence of gravitational radiation).Test particles and electromag-
netic waves follow geodesics relative to this metric.

The Newtonian approximation for the metric for which the
geodesic equations are the Newtonian equations of motion
is[5]

(4)

where c ≈ 3 × 105 km/s is the velocity of light.

General Relativity Motion Correction
Inserting Eq. (4) for the metric tensor into the Einstein field
equations and utilizing a harmonic coordinate condition yields
the post-Newtonian approximation to the metric tensor. The
equations for a geodesic in the post-Newtonian approxima-
tion yield the Newtonian equations of satellite motion (3) plus
the following earth-attraction term in harmonic coordinates to
second order in |v|/c:[5]

(5)

  

           

where v = (v1, v2, v3) is the velocity (coordinate time derivative
of x) and where α is the gravitational radius of the earth:

(6)

The resulting advance of the GPS orbit perigee is[5]

(7)

where a ≈ 2.656 × 104 km is the semimajor axis and e the
eccentricity of the GPS 12-h-period orbit.This angle advance is
83.6 mm/revolution along track, which is important for satel-
lite-to-satellite observables, and is equivalent to the angle
advance caused by a –8.8-mm change in a. Hence, the general
relativity motion term is also important for millimeter-accura-
cy ground-based observables.

Formally, the general relativity effect of the sun on a GPS satel-
lite orbit in earth-centered coordinates is the general relativity
effect on the satellite minus this effect on the earth, with earth-
sun cross interaction terms in the post-Newtonian calcula-
tions. It turns out that the secular general relativity effect of
the sun on the earth satellite orbit is the same as if the satellite
orbit were regarded as a gyroscope with "spin axis" along the
earth orbit normal, with the "spin axis" precessing about the
pole of the ecliptic due to the gyroscope orbiting the sun.[6]

As discovered by de Sitter, the result is a 2-arcsec/century (0.27
nano-rad/day) precession of the lunar orbit plane around the
earth relative to the ecliptic plane (plane of the earth’s orbit
around the sun). The de Sitter effect has been detected in 30
years of centimeter-accuracy lunar-laser corner-reflector
data.[7] The de Sitter effect could be a somewhat larger observ-
able effect on GPS orbits because their 54-deg equatorial orbit
inclination implies ecliptic inclinations between 31 deg and 77
deg, whereas the lunar orbit ecliptic inclination is only 5 deg.

Relation Between Terrestrial Atomic Time and Coordinate
Time
The ratio of a time interval δt shown by an atomic clock to the
coordinate time interval Dt is in the Newtonian approximation

(8)

Take the earth gravitational potential at a clock at sea level on
the earth to be –GM/|x| + C and the velocity to be |x|ωecos(lat-
itude), where ωe is the earth rotation angular velocity. Then
the sea level clock rate is 

(9)

relative to coordinate time (CT) rate, where the clock effect of
the larger magnitude gravitational potential going toward the
pole because of the decrease in radius to the center of the
earth is largely counteracted by the clock effect of the
decrease in velocity due to the earth rotation (and also earth J2
effect). At 103 m above sea level, the above –6.9655 × 10-10

correction factor is reduced to –6.9644 × 10-10.
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data out of 1.7 × 1013 cycles in a 3-h pass around apogee than
around perigee.

The variation in the sun gravitational potential effect on clock
rate around a GPS orbit is ±2.6 × 10-12, and hence must also be
taken into account along with the effect of earth orbit eccen-
tricity relative to the sun that affects terrestrial clocks (±1.654
× 10-10 over a year). The variation in the moon gravitational
potential effect on clock rate around a GPS orbit is ±2 × 10-14.

GROUND-BASED AND SATELLITE-BASED OBSERVABLES
Radio Signal Travel Time
Let xo(trec) be the vector from the center of the earth to a GPS
receiver on the earth or a satellite at receive time trec, and let
x(trec–∆t) be the corresponding vector to a GPS satellite at
send time trec – ∆t. Let xe, ve be the vector position and veloc-
ity of the earth relative to the solar system barycenter (well
known from interplanetary radar and optical observations and
spacecraft radio tracking observations).

The one-way travel time delay ∆t (determined by iteration in
the barycentric coordinate system from interpolating the
satellite and earth ephemerides) is

(14)

where the ionosphere correction ∆tion is determined from
dual frequency measurements, the neutral atmosphere correc-
tion ∆tatm contains water vapor and other model parameters
to be estimated, and the general relativity effect ∆trel is given
in Section "General Relativity Radio Propagation Correction."

The difference between doing the light time iteration in the
geocentric frame and the solar system barycenter frame is a
factor of up to |ve|/c ≈ 10-4 in the light time or range, varying
with the GPS-to-receiver vector direction relative to the ve
direction. This is a large effect, but would be counteracted by
the GPS semi-major axis orbit-fit estimate differing when
doing the light-time iteration in the geocentric or barycenter
frame (essentially due to the Lorentz transformation shorten-
ing of measurement rods).

If the various general relativity corrections are included, which
are easier to derive in the solar system barycenter frame, it
would seem that the light-time iteration should be done in the
solar system barycenter frame, as is done in processing lunar
laser observations.[7] Numerically integrating the satellite
motion equations relative to the center of the earth is done for
numerical reasons, where the equations that are integrated are
the formal difference (not a Lorentz transformation) of the
equations of motion of the GPS satellite and earth in the
barycentric frame.

Group Delay Observable
The GPS one-way range group delay observable ∆tgroup is
determined by cross-correlation techniques applied to the
phase-encoded signal. Its theoretical value is given by Eq. (14)
with all the correction terms being positive.

Phase Tracking Observable
The GPS phase tracking observable is the number of cycles of
the carrier signal that have occurred between receiver site

The sun and moon effect on clock rate at the center of the
earth are (per Eq. (12) in the next section).

Average Eccentricity

Sun –1.48055 × 10-8 ±1.654 × 10-10

Moon –2.13 × 10-13 ±5.8 × 10-15

The motion of the earth relative to earth-moon barycenter in
the sun’s gravitational potential causes up to a ±4.6 × 10-13

monthly variation in terrestrial clock rate, whereas the earth
rotation through the solar potential causes up to a ±6.3 × 10-13

daily variation in terrestrial clock rate.

Choose the constant 

(10)

so that CT and sea level terrestrial atomic clocks run at the
same average rate.

International Atomic Time (TAI) is defined as the average of the
time shown by atomic clocks at national time services, which
are mostly near sea level, where the International System (SI)
second is 9,192,631,770 cycles of a certain cesium hyperfine
transition and where 

CT  =  TAI  +  32.184 s + sun e effect (11)

The integrated sun eccentricity effect is a yearly ±0.83-ms vari-
ation between CT and TAI, which affects interpolation of
ephemerides as functions of CT. The motion of the earth rela-
tive to the earth-moon barycenter in the sun’s gravitational
field causes a monthly ±0.2-µs variation between CT and TAI.

The Coordinated Universal Time (UTC) broadcast by the
national time services differs from TAI by the leap seconds
made every 6 months or a year to keep UTC within 0.9 s of UT1
defined by the rotation of the earth.

General Relativity Clock Rate Correction on Satellite
At true anomaly ψ (angle since perigee) in a GPS orbit due to
the earth gravity potential

(12)

If e = 0.01, there is a ±1.3% variation over an orbit in the gen-
eral relativity clock rate correction of –2.5047 × 10-10 relative to
coordinate time, plus the sun, moon, and C effects, which on
average are the same as for a terrestrial clock. Hence

(13)

Hence, the GPS clocks are deliberately run faster by the above
factor by having fewer cesium cycles in a second in order to
keep them in synchronism with sea level clocks. In processing
phase tracking data, the variation in GPS clock rate from
perigee to apogee should be taken into account, because for e
= 0.01, there are 197 fewer cycles of 1.57-GHz GPS frequency
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times tj and tj+1, where tj+1– tj is typically between 1 and 30 s
for data collected continuously for all-in-view satellites.
Sophisticated signal processing makes the count independent
of the phase encoding (180-deg phase changes at zero cross-
ings). For an L-band transmit frequency f = 1227.6 or 1575.42
MHz, the phase tracking count observable, which the receiver
determines with fractional count resolution, is 

φ(tj, tj+1)  =  f [tj+1 – tj + ∆tphase,j+1 – ∆tphase,j ] (15)

where the transmit frequency f has to be adjusted for the vari-
ation in satellite clock rate (see Section "General Relativity
Clock Rate Correction on Satellite").

Millimeter parameter estimation accuracy implies some small
number w times this accuracy in the ground-based L-band
phase tracking observable, so that the phase of the GPS signal
is being measured with w × 1.5-deg accuracy (3w ps timing
accuracy). The GPS-III satellites will use lower frequency UHF
cross links, for which satellite-based phase tracking measure-
ment accuracy could be worse, but the degradation could be
counteracted by a larger signal-to-noise ratio.

The theoretical value of the phase delay ∆tphase is given by Eq.
(14) with the ∆tatm and ∆trel corrections being positive and the
∆tion correction being negative.

General Relativity Radio Propagation Correction
The general relativity one-way group or phase delay effect
(first derived by Irwin Shapiro,[8] separate from the bending
effect) due to the gravitational field of the earth in harmonic
coordinates is[9]

(16)

where the formula would be changed slightly by the constant
C in the gravitational potential, but C is ignored here in order
to see the magnitude of the effect using previously-derived
formulas.

For a terrestrial observing site, the zenith c∆trel = 12.65 mm
and the horizon c∆trel = 18.67 mm for a 6-mm variation. From
one GPS satellite to another, the largest c∆trel = 37.34 mm and
the smallest c∆trel = 9.74 mm for a 27.6-mm variation.

Applying Eq. (16) to the gravitational field of the sun by replac-
ing α by αs = 1.4766 km, x by x – xs with |xs| = 1.496 × 108 km,
etc., yields a correction for a terrestrial receiver between 398
mm and 509 mm (total variation 111 mm) and a correction for
a GPS satellite receiver between 524 mm and 1017 mm (total
variation 493 mm). The lunar general relativity radio propaga-
tion effect is less than 0.05 mm.

Raw and Difference Observables
Great success in estimating regional millimeter-level observ-
ing site coordinates has been obtained by fitting to doubly-dif-
ferenced geophysics phase tracking all-in-view observables,
where the difference of different receivers observing the same
satellite are taken, and then the difference of different satel-
lites.[10] There is common-mode rejection of many error
effects, such as receiver and satellite clock errors, neutral
atmosphere effects, etc. Similar results are obtained using

      

nondifferenced raw observables, with receiver and satellite
clock biases being estimated for each observing pass.[1]

For estimating neutral atmosphere parameters for input to
numerical weather prediction models and for using the fitted
GPS orbits in such applications as airborne gravimetry, the raw
group delay and phase tracking ground-based and satellite-
based all-in-view observables should be used.

Number of Observables
If each of 24 GPS-III satellites observed all the other GPS-III
satellites continuously when not occulted by the earth, there
could be 24 × 23 = 552 phase tracking and group delay data
streams telemetered to the earth, plus the accelerometer, gyro,
sun and earth sensor, and other housekeeping data streams
for each satellite. The number of phase tracking data streams
would be cut in half if a satellite did not observe a satellite that
was observing itself. The phase delay count interval could
range between 1 and 30 s, for a total of 1.5 to 47 million phase
tracking observables a day, plus an equal number of group
delay observables.

To these can be added the all-in-view phase tracking and
group delay observables from hundreds or thousands of
ground stations, yielding tens or hundreds of millions of
observables per day.

Processing these data with the FIMLOF estimation technique
described in the next section will strain the capabilities of
ground-based computers, even as they get faster and faster. A
more straightforward Kalman filter or least squares estimator
could be used by a satellite-based radiation-hard computer
insofar as meter rather than millimeter accuracy is required for
GPS autonomous operation if contact with ground control sta-
tions were lost.

FITTING TO DATA
FIMLOF Overview
It is advocated that an extended Kalman filter be run on the
time-varying satellite position and velocity and a maximum
likelihood estimator be run on the parameters and satellite ini-
tial conditions.[11],[12] This approach, which is used in adaptive
control,[13] has been called maximum likelihood system iden-
tification, or Full Information Maximum Likelihood Optimal
Filtering (FIMLOF). It allows noise in the satellite dynamics
caused by unmodeled effects and nongravitational accelera-
tion measurement noise, and at the same time, uses an optimal
maximum likelihood estimator on the constant parameters
such as site coordinates, accelerometer biases, satellite initial
osculating elliptic orbital elements, etc.

Note that the site coordinates are constant during the time
span of an orbit fit after compensation for the ±30-cm half-
daily deformation due to the lunar-solar solid earth tide and
ocean tide loading. The movement of the site coordinates
from one orbit fit interval to the next, or a detected shift dur-
ing an orbit fit interval, is what is of interest for possible earth-
quake prediction.

Given nominal values of the satellite initial osculating elliptic
orbital elements at time t0 and other parameters such as
accelerometer biases, earth gravitational potential harmonics,
observing site coordinates, atmosphere parameters, clock
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each satellite) given values for the initial conditions and
parameters. For the GPS satellite constellation, M is nominally
24, but it could be more or less, depending on the health of the
individual satellites and whether spare satellites are activated.
If other satellites observing GPS were included in the orbit fit
in addition to the GPS satellites, M would be larger than 24.

Let y(tk) be the linear Kalman filter correction to x(tk), so that
the observable vector Z(tk) at time tk is a function h(x(tk) +
y(tk)). Take the initial state of the linearized Kalman filter state
vector to be y0 = y(t0) = 0 with an a priori covariance P0 = P(t0)
defined as a reasonable measure of the uncertainty in x(t0), in
order to start off the Kalman filter for y(t). Note that x(t0) will be
maximum likelihood adjusted after running the Kalman filter,
since the initial osculating elliptic orbital elements are so
adjusted.

The propagation of the state vector y from time tk–1 to time tk
≥ tk–1 is given by the state equation

y(tk)  =  Φ(tk ; β)y(tk–1) + Lξ(tk–1) (18)

where ξ is a zero mean white plant noise vector with covari-
ance E{ξ(tj)ξ(tk)T} = Qδjk. The state transition matrix Φ as func-
tion of the parameters β=(β1, …, βn) is

(19)

where the 6M × 6M matrix Φ is zero away from 6 × 6 blocks
down the diagonal (hence only 6 × 6 submatrices need to be
inverted), with the blocks being determined by numerically
integrating the equations for the partial derivatives of satellite
position and velocity with respect to initial osculating elliptic
orbital elements elem0.

The partial derivatives ∂Φ/∂βl can also be calculated using the
second-order partial derivatives described at the end of the
last section.

Processing Observations
Take the Kalman filter observable vector z(tk) to be the actual
observable Z(tk) minus the theoretical value of the observable
h(x(tk)) evaluated for the nominal satellite motion state x(tk).
Then, the linearized Kalman filter observables equation is 

z(tk)  =  H(tk ; β)y(tk) + θ(tk) (20)

where θ is a zero mean white measurement noise vector with
covariance E{θ(tj)θ(tk)T} = Rδjk, and H(tk) = ∂h / ∂x(tk).

Given values for the parameters β (including initial osculating
elliptic orbital elements) and the initial state y(t0) = 0 and its
covariance P0, running a Kalman filter yields the propagated
state  y(tk | tk–1) = Φy(tk–1), its covariance

P(tk | tk–1)  =  Φ P(tk) ΦT + L Q LT (21)

the zero mean pre-update residual innovations sequence and
its covariance

r(tk)  =  z(tk) – H y(tk | tk–1) (22)

S(tk)  =  E{r(tk) r(tk)T}  =  H P(tk | tk–1) HT + R (23)

and the updated state and its covariance

y(tk)  =  y(tk | tk–1) + K(tk) r(tk) (24)

    
 

 
 

biases, etc., the satellite equations of motion are numerically
integrated along with the equations for the partial derivatives
of the motion with respect to the parameters (except for
parameters that do not affect satellite motion such as site
coordinates). Earth gravitational harmonic coefficient partial
derivatives are calculated only if low-altitude satellite observa-
tions are included.

An extended Kalman filter is run on the satellite motions given
the observables Z(tk) at times tk (k = 1, …, N), where the plant
noise covariance in the Kalman filter equations is sized to
encompass any unmodeled effects and nongravitational
acceleration measurement noise. Using the partial derivatives
of the observables with respect to the initial osculating elliptic
orbital elements and other parameters, a maximum likelihood
adjustment is made to these quantities. The process is repeat-
ed until convergence is obtained.

The satellite motion equations can be numerically integrated
ahead in time for prediction purposes with zero plant noise
and projections of the nongravitational acceleration, which
probably repeats to a great extent from one orbit to the next.

Partial Derivatives of Satellite Motion
Given initial osculating elliptic orbit elements, the initial
Cartesian position and velocity are calculated as initial condi-
tions for numerically integrating equations of motion (3) with
Ri being the general relativity term (5) plus the sun de Sitter
effect. The equations for the partial derivatives with respect to
parameters βl are also numerically integrated:

(17)

with zero initial conditions at time t0, unless βl is an initial
osculating elliptic orbital element, in which case, the initial
conditions are the partial derivatives of the initial position and
velocity with respect to the orbital element. Estimating initial
osculating elliptic orbital elements instead of initial position
and velocity is a standard approach in celestial mechanics,
which separates the partial derivative with respect to semima-
jor axis a that grows with time from the other initial condition
partial derivatives that do not grow with time.

The equations for the second-order partial derivatives
∂2xi/∂elem0∂βl with respect to initial osculating elliptic orbital
elements elem0 and the parameters βl are also numerically
integrated with zero initial conditions, except that the initial
conditions are nonzero for βl one of the elem0.

Extended Kalman Filter State Equation
Let x(tk) denote the position and velocity vector of dimension
6M at time tk of the M satellites, as determined by interpolation
from the numerically integrated ephemeris files (one file for
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P(tk)  =  E{y(tk) y(tk)T}  =  [I – K(tk) H]P(tk | tk–1) (25)

where I is the identity matrix and K is the Kalman filter gain
matrix[14]

K(tk)  =  P(tk | tk–1) HT [H P(tk | tk–1) HT + R]-1 (26)

As the Kalman filter is run on the states y, the partial derivatives
of the various Kalman filter matrices are also calculated to
allow a maximum likelihood adjustment to the parameters β
upon completion of the Kalman filter.

Negative Log Likelihood Function
The joint probability density p(zN) of the observables zN =
[z(tN), z(tN-1), …, z(t1), y(t0)] through time tN is

p(zN)  =  p(z(tN)|zN-1)p(z(tN-1)|zN-2)…p(z(t1)|y0)p(y0) (27)

by Bayes rule, where the Gaussian conditional probability den-
sity of z(tk) given zk-1 is

p(z(tk)| zk-1) = (2π)-ρ/2 det[S(tk)]-1/2 × exp[r(tk)T S(tk)-1 r(tk)] (28)

where ρ is the dimension of the observation vector. The nega-
tive log likelihood ζ = –ln[p(zN)] of the measurements through
time tN is

(29)

where by Eq. (28) with 6M the dimension of the initial state
vector y(t0) 

(30)

(31)

The constant terms involving 2π can be ignored in taking par-
tial derivatives, as can all of ζ(y(t0);β) because of the way in
which we have formulated the extended Kalman filter with
y(t0) = y0 = 0 and P0 not involving parameters to be estimated.

The partial derivatives of the negative log likelihood are

(32)

where

(33)

    

    

  

    

     

   

  

     

 

(34)

Maximum Likelihood Estimation 
Let  ∆βl =  bl – βlo be adjustments from guesses  βlo toward
maximum likelihood estimates bl that minimize the negative
log likelihood ζ(zN;β). A Taylor series expansion of the gradient
of ζ(zN;β) yields 

(35)

(36)

(37)

The expected value of the matrix A is the Fisher information
matrix I. When solving for the adjustments ∆βl from the nor-
mal equations (35), the Fisher information approximation is
used, where A is replaced by I:

(38)

Taking expected values using Eq. (32) yields[11]

(39)

The normal equations (35) are solved with the Fisher informa-
tion approximation (39) to obtain parameter adjustments, and
the satellite equations of motion and the equations for the
partial derivatives of the motion are numerically integrated
with the new values of the initial osculating elliptic orbital ele-
ments and other parameters. The extended Kalman filter is
rerun and the normal equations for adjustments to the param-
eters reformed and solved to get further adjustments to the
parameters. The iteration continues until convergence is
reached. The uncertainty of the parameter estimates has the
Cramer-Rao lower bound I–1.[11]

CONCLUSIONS
Satellite Instrumentation
Adding gyroscopes and a low-g 3-axis linear accelerometer as
well as satellite-to-satellite observable and communication
cross links to the GPS-III satellites would have to be engineered
carefully into the satellite design. Cross-link antennas as well as
earth-coverage antennas are required, and interference has to
be avoided for simultaneous transmission and reception of cross-
link signals. It is important that the GPS satellite-based receivers
include phase tracking as well as group delay measurements.
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angular orientation, since they are made from the rotating
earth with a known or estimated transformation from earth-
fixed coordinates to inertial coordinates referred to the mean
equinox and equator of J2000.0, which is the coordinate frame
in which the GPS satellite motions are numerically integrated.

Robust millimeter positioning has many applications, some of
which are listed in Section "Applications of Millimeter-
Accuracy Satellite Orbit Fits," including estimating earth rota-
tion parameters (wobble and UT1 – UTC).
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The 3-axis accelerometer should be as close to the center of
mass of the satellite as possible, with fuel tanks symmetrically
expending fuel relative to the center of mass with no sloshing.
The satellite attitude should be smoothly and tightly con-
trolled by blending the outputs of the gyroscopes and sun and
earth sensors, including when going through shadow.

The gyroscope, accelerometer, sun and earth sensor, and satel-
lite-to-satellite observable data would be telemetered to the
ground to be used along with ground-based observations for
robust millimeter-accuracy orbit fits and ground site position
determination. With satellite-based observables, orbit fits on
the satellites are possible (perhaps to meter rather than mil-
limeter accuracy) for autonomous operation independent of
ground-control sites, if adequate onboard computation and
data storage capacity are provided.

Effects of General Relativity
The orbital motion, radio propagation, and clock rate effects of
general relativity have to be modeled carefully to post-
Newtonian order, including earth-sun cross coupling. These
effects are most easily modeled in the solar system barycenter
frame, so that light-time iterations should be done in that
frame for the millimeter-level orbit fits.

For more conventional lower-accuracy applications with
broadcast ephemerides, either the orbit fits have to be repeat-
ed in a geocentric frame or the orbit fit in the barycenter frame
has to be Lorenz transformed to the geocentric frame, since
the light time iteration is traditionally done in the geocentric
frame or not at all, where a large portion of the geocentric light
time effect is absorbed in the estimated clock bias when doing
receiver triangulation navigation from pseudo-range to four or
more satellites.

Estimation Approach and Applications
A mixture of extended Kalman filtering and maximum likeli-
hood estimation should be used in fitting the GPS orbits to
data (maximum likelihood system identification or FIMLOF),
which, however, requires the calculation of some second-order
partial derivatives. If satellite-based accelerometer measure-
ments result in low enough plant noise in the satellite dynam-
ics, then least-squares maximum likelihood estimation could
be adequate using only first-order partial derivatives.

Not being corrupted by atmospheric effects, the satellite-
based observables determine the relative distances within the
GPS constellation very accurately and give some visibility into
the GPS constellation’s angular orientation because of earth
gravity harmonic and lunar-solar perturbations. The ground-
based observables better determine the GPS constellation’s
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