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Outline

Time is important in the study of binary stars.

It is an area of near-infinite confusion.

In this lecture:

1. Time systems

2. Ephemerides, “O − C” diagrams

3. Period determination, aliasing.

4. Periodograms
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Time systems

TAI “atomic time”, defined by a large number of atomic clocks
around the world (corrected for relative time-dilation effects).
SI second defined in terms of cycles of a transition of caesium
133.

GPS the Global Positioning System (GPS) provides readily
available access to atomic clock-based time, good to 50 ns.

UT1 “Universal Time”, designed to be locked to the mean motion
of the Sun. Earth’s rotation is slowing down in the long term,
so UT1 is a non-uniform timescale.

UTC “Coordinated Universal Time”. Always an integral number of
seconds behind TAI, kept to within 0.9 seconds of UT1. Leap
second (delays) are added irregularly, at midnight on either
December 31 or June 30. (Most recent: June 30 2012). UTC
replaces the older GMT. Today TAI−UTC = 35 s.
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Astronomical time – I

JD “Julian Date” [“Julian” as in Julius Caesar]. UTC expressed
in days since noon on January 1, 4713 BC (Julian calendar;
Nov 24, 4714 BC Gregorian).
Midnight 10/11 Sep 2012 → JD = 2456182.5.

MJD “Modified Julian Date”: for those who like their days to start
at midnight (e.g. me):

MJD = JD − 2400000.5.

MJD = 0 at 0h, Nov 17, 1858. MJD has a computational
benefit in terms of precision because of roundoff error. e.g. to
write a JD to 1µs precision requires 18 digits.

Confusion potential: 8/10. Potential penalty: 0.5 days
In tables in papers it is quite common to quote JDs with the
leading “24” dropped off. Normally this is specified, but if not, is
it a JD or an MJD?
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Astronomical time – II

UTC is discontinuous, but can easily be corrected to TAI. However
TAI is no use on its own for astronomical times because Earth’s
motion around the Sun leads to variable arrival times (range:
±500 s).

1. Correct to centre of Sun (“heliocentre”) → HJD,
“Heliocentric Julian Day” (also HMJD)

2. But the centre of the Sun moves irregularly too because of
the planets (range ±2 s):

→ correct to centre of mass of solar system (“barycentre”) →
BJD, BMJD.

3. However, TAI corrected to the barycentre of the solar system
is still not what we want . . .
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Astronomical time – III
Earth’s eccentric orbit and perturbation from the other planets
means that its velocity varies and that it moves through a varying
gravitational potential. TAI therefore is in the language of GR a
proper time whereas we want a coordinate time. This led to:

TT “Terrestrial Time”, replacing earlier “ET” and “TDT”. TT is
directly related to TAI:

TT = TAI + 32.184.

TDB “Barycentric Dynamical Time”. This is finally the time we are
after. It is TT corrected for GR effects (range ±0.002 s),
making it suitable for astronomical time measurements.

TCB “Barycentric Coordinate Time”. Essentially identical to TDB
but advances at a slightly higher rate. TDB is much more
commonly used.
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Time recipe
1. Establish the mid-time of your image or spectrum, typically in

UTC. Make sure you know whether JD or MJD is being used.

2. Try to find out if it is actually accurate; computer clocks can
be terrible . . . some can drift over one minute a day!

3. Work out whether you want HJD or BJD. HJDs are usually
computed from JD(UTC). If you want BJD, you need
JD(TDB). Although BJD(TDB) should be the final time to
aim for, HJD(UTC) is often needed for backwards
compatibility.

4. Apply the appropriate light-travel time correction. In very
precise work you should worry about the precision of
coordinates, δθ:

δt ≤ 2.4× 10−3

(
δθ

1”

)
s.
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Time pitfalls

I have seen all of the following:

1. MJD / JD error. Cost: 0.5 days, spotted, luckily.

2. Failure to correct for light-travel time. Cost: missed eclipse of
target on v.expensive satellite.

3. Using UTC rather than TDB to derive barycentric times.
Cost: ∼ 60 s leading to invalid published claim of relative
X-ray/optical phasing.

4. Imprecise coordinates in pulsar work. Cost: spurious claim in
Nature of planet with 6 month period.

5. Many instances of plain poor times (10 minutes out in one
case.) Cost: spurious results polluting the literature.

If your research involves precision timing, take care!
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Time resources

1. USNO: the US Naval Observatory has good information on
time systems.

2. SOFA: “Standards Of Fundamental Astronomy”. Provides a
good library of subroutines for coordinate and time
transformations. (Python fans: see pysofa)

3. For super-accurate work (i.e. pulsars), and for testing simpler
routines, look up the state-of-the-art package, TEMPO2.
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Ephemerides – I

We specify the location of a binary in its orbit with an ephemeris
as follows (for the star NN Ser):

BMJD(TDB) = 47344.0254693(7) + 0.13008012180(2)E ,

where within parentheses are the 1σ uncertainties in the last digit
and E is the “cycle number”.

The precise meaning of E varies:

1. often (as here) it marks the time of the deepest (primary)
eclipse,

2. but it is also quite often the time of maximum recession
velocity of the brighter component.
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Ephemerides – II
If the period changes we need a quadratic ephemeris:

T = T0 + P0E + CE 2.

The instantaneous period at cycle E is

P =
dT

dE
= P0 + 2CE .

The rate of change of period is therefore

Ṗ =
dP

dT
=

dE

dT

dP

dE
=

2C

P
,

so

C =
1

2
PṖ.
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Ephemeris uncertainties

T = T0 + P0E + CE 2.

Let the covariance between two quantities A and B be denoted
V (A,B), then the uncertainty in the predicted time of cycle E ,
σT = V (T ,T )1/2, is given by:

σ2T = V (T0,T0) + V (P0,P0)E 2 + V (C ,C )E 4 +

2V (T0,P0)E + 2V (T0,C )E 2 + 2V (P0,C )E 3,

but people only rarely quote the cross-coefficients.

If creating a linear ephemeris, you can choose the zero point of E
to minimise V (T0,P0) to avoid the issue.
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Top:
Linear ephemeris, dashed lines
show ±3σ on prediction.
Dotted line: result if
cross-coefficient is ignored.

Bottom:
Quadratic ephemeris fit to the
same data. Statistical
uncertainty “blows up”outside
span of data.
Favour linear ephemerides unless
you have good reason not to.
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Wolff et al (2009), O − C of X-ray binary, EXO 0748-676
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Period determination: aliasing
Suppose one had the following measurements of eclipse times, the
last taken a year after the first two:

E Time (BMJD)

0 551200.345±0.002
4 551200.834±0.002
X 551569.347±0.002

What is P and cycle number X?

First two measurements give

P =
0.834(2)− 0.345(2)

4
= 0.1222± 0.0007.

Therefore:

X =
569.347(2)− 200.345(2)

0.1222(7)
= 3019± 17.

Tom Marsh, Department of Physics, University of Warwick Slide 16 / 30



Period determination: aliasing
Suppose one had the following measurements of eclipse times, the
last taken a year after the first two:

E Time (BMJD)

0 551200.345±0.002
4 551200.834±0.002
X 551569.347±0.002

What is P and cycle number X?

First two measurements give

P =
0.834(2)− 0.345(2)

4
= 0.1222± 0.0007.

Therefore:

X =
569.347(2)− 200.345(2)

0.1222(7)
= 3019± 17.

Tom Marsh, Department of Physics, University of Warwick Slide 16 / 30



Period determination: aliasing

If X = 3019:

P3019 =
569.347(2)− 200.345(2)

3019
= 0.1222265(2).

but given the ±17, we could equally well have:

P3018 = 0.1222671(2),

P3020 = 0.1221861(2),

P3021 = 0.1221456(2),

. . .

These are period aliases. They crop up time and again in one form
or other.
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Breaking aliases

Reliable selection of unique
periods requires avoidance of
cycle count ambiguity.

Typically this requires enough
measurements at one epoch to
jump the gaps to others.
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Periodograms

For a set of radial velocity measurements (ti , vi , σi for
i = 1, 2, . . .N) of a circular orbit one fits the model

v∗i = γ + A sin(2πf ti ) + B cos(2πf ti ),

and computes χ2
min[γ,A,B](f ). This is ≤ χ2

min[γ] for a constant
model. Thus

S(f ) =
χ2
min[γ] − χ

2
min[γ,A,B](f )

2
,

the improvement in χ2 of a constant+sinusoid vs a constant-only
model, is a statistic indicative of favoured frequencies/periods.

Apart from the optimisation with respect to γ, this is the
“Lomb-Scargle periodogram” (hence the factor 2).
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Periodograms
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Window functions

Can view a dataset O as an infinite
ideal sequence S viewed through a
“window” W set by observing
constraints so that

O = WS .

By the convolution theorem

Õ = W̃ ∗ S̃ ,

where ∼ denotes a Fourier
transform (FT). Thus the observed
FT Õ is the convolution of the ideal
one S̃ with the “window function”
W̃ , set by your sampling.
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Window function examples

0 2 4 6 8 10
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

S
ig

n
a
l

0 1 2 3 4 5
Frequency

0

10

20

30

40

50

60

P
o
w

e
r

0 2 4 6 8 10
Time

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0 1 2 3 4 5
Frequency

0

20

40

60

80

100

120

Tom Marsh, Department of Physics, University of Warwick Slide 22 / 30



Periodograms: resolution vs time

The frequency resolution
of a periodogram varies
inversely with the
duration of observations
(cf uncertainty principle).

To resolve two peaks
separated by ∆f , one
needs a timebase
∆t > 1/∆f .
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Periodograms can simplify . . .
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WD/dM binary: ellipsoidal M dwarf, pulsating white dwarf.
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Periodograms & aliasing
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Periodograms & aliasing

In a simple case as at
the right (white dwarf
pulsator) the aliases are
spaced by 1 over the time
difference between the
two sets of data.

In this case the duration
per night is not long
enough to establish a
unique alias from one
night to the next.
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Periodogram tips

The L-S periodogram is just one possibility; non-sinusoidal signals
may require more complex models (e.g. box-car models for planet
transits).

Deciding whether a signal is real and which alias is correct can be
tricky – see papers by Alex Schwarzenberg-Czerny.

Statistical results are mostly-based upon singly periodic signals; for
treatment of multiply periodic signals, e.g. “pre-whitening”, see
papers on asteroseismology.

Beware red noise, aka 1/f noise or flickering. See papers on X-ray
binaries and AGN and Vaughan, 2010, MNRAS, 402, 307 for some
cautionary tales.
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Period precision

Common misconception:
The width of an alias peak
corresponds to the precision
with which one can measure
the frequency.

It is related, but only loosely.
One can often do much
better.
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Aliasing from under-sampling
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Conclusions

• Time and period analysis hold many unpleasant surprises for
the unwary. You have been warned!

• Familiar connections between time and frequency come up in
period measurement.

• A thorough understanding of these concepts is important for
optimising observations of binary stars.
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