
Assembly of Finite Element Methods
on Graphics Processors

Cris Cecka Toru Takahashi Adrian Lew Eric Darve

Department of Mechanical Engineering
Institute for Computational and Mathematical Engineering

Stanford University

January 12th, 2011
Institute for Mathematics and its Applications

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 1 / 28

1 Motivation

2 FEM Assembly

3 GPU Assembly
LocalElem
GlobalNZ
SharedNZ
Scatter and Reduction Arrays

4 Results

5 Application

6 Conclusion

7 FMM GPU

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 2 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Productivity

Separate computational science from computer science

Portability

Performance

Use domain knowledge and platform knowledge

Innovation

Change architectures and programming models under-the-hood

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 3 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Productivity

Separate computational science from computer science

Portability

Performance

Use domain knowledge and platform knowledge

Innovation

Change architectures and programming models under-the-hood

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 3 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Productivity

Separate computational science from computer science

Portability

Performance

Use domain knowledge and platform knowledge

Innovation

Change architectures and programming models under-the-hood

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 3 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Productivity

Separate computational science from computer science

Portability

Performance

Use domain knowledge and platform knowledge

Innovation

Change architectures and programming models under-the-hood

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 3 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Productivity

Separate computational science from computer science

Portability

Performance

Use domain knowledge and platform knowledge

Innovation

Change architectures and programming models under-the-hood

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 3 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Understands and uses topology

Domain decomposition
Sparsity pattern

Understands, transforms, and parallelizes loops

for(f <- faces(cell))

for(c <- cell(mesh)) { ... }

Stencils statically analyzed from access patterns

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 4 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Understands and uses topology

Domain decomposition
Sparsity pattern

Understands, transforms, and parallelizes loops

for(f <- faces(cell))

for(c <- cell(mesh)) { ... }

Stencils statically analyzed from access patterns

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 4 / 28

Domain Specific Languages

Liszt @ Stanford

Mesh-based PDEs on Heterogeneous Platforms
Analyzable DSL: Language with domain-specific features and
restrictions that provide context for domain specific
transformations

Understands and uses topology

Domain decomposition
Sparsity pattern

Understands, transforms, and parallelizes loops

for(f <- faces(cell))

for(c <- cell(mesh)) { ... }
Stencils statically analyzed from access patterns

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 4 / 28

Why FEM Assembly on the GPU?

Sparse Linear Algebra coming of age on GPU.

Extensive research on Sparse Solvers on GPU.
Extensive research on SpMV.

Non-linear and time-dependent problems require many
assembly procedures.

Want to use topology efficiently with a black-box element
kernel.

Can assemble, solve, update, and visualize on the GPU

Completely avoid transfers with CPU.
Fast (real-time) simulations with visualization.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 5 / 28

Why FEM Assembly on the GPU?

Sparse Linear Algebra coming of age on GPU.

Extensive research on Sparse Solvers on GPU.
Extensive research on SpMV.

Non-linear and time-dependent problems require many
assembly procedures.

Want to use topology efficiently with a black-box element
kernel.

Can assemble, solve, update, and visualize on the GPU

Completely avoid transfers with CPU.
Fast (real-time) simulations with visualization.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 5 / 28

Why FEM Assembly on the GPU?

Sparse Linear Algebra coming of age on GPU.

Extensive research on Sparse Solvers on GPU.
Extensive research on SpMV.

Non-linear and time-dependent problems require many
assembly procedures.

Want to use topology efficiently with a black-box element
kernel.

Can assemble, solve, update, and visualize on the GPU

Completely avoid transfers with CPU.
Fast (real-time) simulations with visualization.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 5 / 28

Why FEM Assembly on the GPU?

Sparse Linear Algebra coming of age on GPU.

Extensive research on Sparse Solvers on GPU.
Extensive research on SpMV.

Non-linear and time-dependent problems require many
assembly procedures.

Want to use topology efficiently with a black-box element
kernel.

Can assemble, solve, update, and visualize on the GPU

Completely avoid transfers with CPU.
Fast (real-time) simulations with visualization.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 5 / 28

FEM Direct Assembly

Most common FEM assembly procedure:

Compute element data.

One by one.

Accumulate into global system.

Using a local index to global index mapping.

e
�

Ke fe

⊕

Ku = f

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 6 / 28

FEM Direct Assembly

Most common FEM assembly procedure:

Compute element data.

One by one.

Accumulate into global system.

Using a local index to global index mapping.

e
�

Ke fe

⊕

Ku = f

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 6 / 28

Data Flow

Nodal Data

Element Data

e

e

e

e

e

e

FEM System

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 7 / 28

Data Flow

Nodal Data Element Data

e

e

e

e

e

e

FEM System

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 7 / 28

Data Flow

Nodal Data Element Data

e

e

e

e

e

e

FEM System

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 7 / 28

Data Flow

Nodal Data Element Data

e

e

e

e

e

e

FEM System

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 7 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

GPU FEM Assembly Strategies

Two Key Choices:

Store Element Data In

Global Memory

Computation / Assembly.
Min computation.

Local Memory

Fast read/write.
No shared element data.

Shared Memory

Fast read/write.
Small size.

Threads Assemble By

Non-zero (NZ)

Simple - Indexing.
Imbalanced.

Row

More balanced.
Lookup tables.

Element

Race conditions.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 8 / 28

Local-Element

- Coloring the Mesh

Assign one thread to one element.

Compute the element data.
Assemble directly into system.

Race conditions still possible!

Partition elements to resolve race conditions.

Transform into a coloring problem.

Problems.

No sharing of nodal or element data.
Little utilization of GPU resources.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 9 / 28

Local-Element

- Coloring the Mesh

Assign one thread to one element.

Compute the element data.
Assemble directly into system.

Race conditions still possible!

Partition elements to resolve race conditions.

Transform into a coloring problem.

Problems.

No sharing of nodal or element data.
Little utilization of GPU resources.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 9 / 28

Local-Element - Coloring the Mesh

Assign one thread to one element.

Compute the element data.
Assemble directly into system.

Race conditions still possible!

Partition elements to resolve race conditions.

Transform into a coloring problem.

Problems.

No sharing of nodal or element data.
Little utilization of GPU resources.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 9 / 28

Local-Element - Coloring the Mesh

Assign one thread to one element.

Compute the element data.
Assemble directly into system.

Race conditions still possible!

Partition elements to resolve race conditions.

Transform into a coloring problem.

Problems.

No sharing of nodal or element data.
Little utilization of GPU resources.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 9 / 28

Global-NZ

Kernel1 - Assign one thread to one element.

Compute the element data.
Store element data in global memory.

Kernel2 - Assign one thread to one NZ.

Assemble from global memory.

Optimizing:

Cluster the elements so they share nodes.
Prefetch nodal data into shared memory.

Problems.

Extra passes through global memory.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 10 / 28

Global-NZ

Kernel1 - Assign one thread to one element.

Compute the element data.
Store element data in global memory.

Kernel2 - Assign one thread to one NZ.

Assemble from global memory.

Optimizing:

Cluster the elements so they share nodes.
Prefetch nodal data into shared memory.

Problems.

Extra passes through global memory.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 10 / 28

Global-NZ

Kernel1 - Assign one thread to one element.

Compute the element data.
Store element data in global memory.

Kernel2 - Assign one thread to one NZ.

Assemble from global memory.

Optimizing:

Cluster the elements so they share nodes.
Prefetch nodal data into shared memory.

Problems.

Extra passes through global memory.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 10 / 28

Global-NZ

Kernel1 - Assign one thread to one element.

Compute the element data.
Store element data in global memory.

Kernel2 - Assign one thread to one NZ.

Assemble from global memory.

Optimizing:

Cluster the elements so they share nodes.
Prefetch nodal data into shared memory.

Problems.

Extra passes through global memory.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 10 / 28

Global-NZ Data Flow

The optimized algorithm looks like:

System of Equations:

Reduction:

Kernel BreakElement Data:

Coalesced Write:

Element Subroutine:

Nodal Data:

Block Element Matrix Ek :

Thread Sync

Gather:

Nodal Data:

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 11 / 28

Shared-NZ

Assign one thread to one element.

Compute the element data.
Store element data in shared memory.

Reassign threads to NZs.

Assemble from shared memory.

A set of NZs requires a set of elements.

Must compute all “halo” element data.

A set of elements requires a set of nodes.

Must gather all “halo” nodal data.

Problems.

Shared memory size is very limiting.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 12 / 28

Shared-NZ

Assign one thread to one element.

Compute the element data.
Store element data in shared memory.

Reassign threads to NZs.

Assemble from shared memory.

A set of NZs requires a set of elements.

Must compute all “halo” element data.

A set of elements requires a set of nodes.

Must gather all “halo” nodal data.

Problems.

Shared memory size is very limiting.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 12 / 28

Shared-NZ

Assign one thread to one element.

Compute the element data.
Store element data in shared memory.

Reassign threads to NZs.

Assemble from shared memory.

A set of NZs requires a set of elements.

Must compute all “halo” element data.

A set of elements requires a set of nodes.

Must gather all “halo” nodal data.

Problems.

Shared memory size is very limiting.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 12 / 28

Shared-NZ

Assign one thread to one element.

Compute the element data.
Store element data in shared memory.

Reassign threads to NZs.

Assemble from shared memory.

A set of NZs requires a set of elements.

Must compute all “halo” element data.

A set of elements requires a set of nodes.

Must gather all “halo” nodal data.

Problems.

Shared memory size is very limiting.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 12 / 28

Shared-NZ

Assign one thread to one element.

Compute the element data.
Store element data in shared memory.

Reassign threads to NZs.

Assemble from shared memory.

A set of NZs requires a set of elements.

Must compute all “halo” element data.

A set of elements requires a set of nodes.

Must gather all “halo” nodal data.

Problems.

Shared memory size is very limiting.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 12 / 28

Shared-NZ

Assign one thread to one element.

Compute the element data.
Store element data in shared memory.

Reassign threads to NZs.

Assemble from shared memory.

A set of NZs requires a set of elements.

Must compute all “halo” element data.

A set of elements requires a set of nodes.

Must gather all “halo” nodal data.

Problems.

Shared memory size is very limiting.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 12 / 28

Shared-NZ Data Flow

The optimized algorithm looks like:

System of Equations:

Reduction:

Element Data: Thread Sync

Element Subroutine:

Nodal Data: Thread Sync

Scatter:

Nodal Data:

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 13 / 28

Scatter and Reduction Arrays

General procedure:

Make a set of operations to be done for each partition.

Pack these into an array such that reading is coalesced.

Scatter Array: Reduction Array:

Very fast.

Highly adaptable.

Significant setup cost.

Significant memory cost.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 14 / 28

Scatter and Reduction Arrays

General procedure:

Make a set of operations to be done for each partition.

Pack these into an array such that reading is coalesced.

Scatter Array:

Reduction Array:

Very fast.

Highly adaptable.

Significant setup cost.

Significant memory cost.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 14 / 28

Scatter and Reduction Arrays

General procedure:

Make a set of operations to be done for each partition.

Pack these into an array such that reading is coalesced.

Scatter Array: Reduction Array:

Very fast.

Highly adaptable.

Significant setup cost.

Significant memory cost.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 14 / 28

Scatter and Reduction Arrays

General procedure:

Make a set of operations to be done for each partition.

Pack these into an array such that reading is coalesced.

Scatter Array: Reduction Array:

Very fast.

Highly adaptable.

Significant setup cost.

Significant memory cost.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 14 / 28

Scaling with Element Number

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 15 / 28

Scaling with Element Order

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 16 / 28

Application

GPU non-linear neoHookean model.

Newton-Raphson update at each step.

Assemble, solve, update, and render at each step.

28,796 Nodes. 125,127 Elements.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of FEM on GPUs. GPU Gems. Preprint.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 17 / 28

Application

GPU non-linear neoHookean model.

Newton-Raphson update at each step.

Assemble, solve, update, and render at each step.

28,796 Nodes. 125,127 Elements.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of FEM on GPUs. GPU Gems. Preprint.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 17 / 28

Application

GPU non-linear neoHookean model.

Newton-Raphson update at each step.

Assemble, solve, update, and render at each step.

28,796 Nodes. 125,127 Elements.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of FEM on GPUs. GPU Gems. Preprint.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 17 / 28

Application

GPU non-linear neoHookean model.

Newton-Raphson update at each step.

Assemble, solve, update, and render at each step.

28,796 Nodes. 125,127 Elements.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of FEM on GPUs. GPU Gems. Preprint.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 17 / 28

Implementation

Newton-Raphson

NR CPU
NR GPU

Assembly

AssemblyCPU
AssemblyCPU Opt
AssemblyGlobalNZ
AssemblySharedNZ

Conjugate Gradient

CG CPU
CG GPU
DCG CPU
DCG GPU

Sparse Matrix Format

COO Matrix
CSR Matrix
HYB Matrix
DCOO Matrix
DCSR Matrix
DHYB Matrix

All SpMVs on CPU and GPU.

Program

Newton-Raphson

Assembly

Conjugate Gradient

SpMV

Display/Interaction

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 18 / 28

Improvement

Total:
21.3s

SpMV

70%

Assembly

19%

CG11%

Total:
5.5s

Assembly

74%

SpMV

16% CG

5%
NR3%
Transfer2%

Total:
1.3s

SpMV

66%

Assembly

15% CG

19%

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 19 / 28

Improvement

Total:
21.3s

SpMV

70%

Assembly

19%

CG11%

Total:
5.5s

Assembly

74%

SpMV

16% CG

5%
NR3%
Transfer2%

Total:
1.3s

SpMV

66%

Assembly

15% CG

19%

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 19 / 28

Improvement

Total:
21.3s

SpMV

70%

Assembly

19%

CG11%

Total:
5.5s

Assembly

74%

SpMV

16% CG

5%
NR3%
Transfer2%

Total:
1.3s

SpMV

66%

Assembly

15% CG

19%

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 19 / 28

Assembly Speed

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 20 / 28

FEM Conclusion

C. Cecka, A. Lew, E. Darve, Assembly of Finite Element Methods on Graphics

Processors. IJNME, 2009.

Create and classify several GPU FEM assembly algorithms.

Identification of optimizations and limitations of each
algorithm.

Optimal method depends on the element:

Memory requirements of element kernels.
Computational requirements of element kernels.

Precomputation algorithms and support data structures.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of Finite Elements on Graphics Processors. GPU Gems. Preprint.

Applying the methods to a high-performance FEM application.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 21 / 28

FEM Conclusion

C. Cecka, A. Lew, E. Darve, Assembly of Finite Element Methods on Graphics

Processors. IJNME, 2009.

Create and classify several GPU FEM assembly algorithms.

Identification of optimizations and limitations of each
algorithm.

Optimal method depends on the element:

Memory requirements of element kernels.
Computational requirements of element kernels.

Precomputation algorithms and support data structures.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of Finite Elements on Graphics Processors. GPU Gems. Preprint.

Applying the methods to a high-performance FEM application.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 21 / 28

FEM Conclusion

C. Cecka, A. Lew, E. Darve, Assembly of Finite Element Methods on Graphics

Processors. IJNME, 2009.

Create and classify several GPU FEM assembly algorithms.

Identification of optimizations and limitations of each
algorithm.

Optimal method depends on the element:

Memory requirements of element kernels.
Computational requirements of element kernels.

Precomputation algorithms and support data structures.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of Finite Elements on Graphics Processors. GPU Gems. Preprint.

Applying the methods to a high-performance FEM application.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 21 / 28

FEM Conclusion

C. Cecka, A. Lew, E. Darve, Assembly of Finite Element Methods on Graphics

Processors. IJNME, 2009.

Create and classify several GPU FEM assembly algorithms.

Identification of optimizations and limitations of each
algorithm.

Optimal method depends on the element:

Memory requirements of element kernels.
Computational requirements of element kernels.

Precomputation algorithms and support data structures.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of Finite Elements on Graphics Processors. GPU Gems. Preprint.

Applying the methods to a high-performance FEM application.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 21 / 28

FEM Conclusion

C. Cecka, A. Lew, E. Darve, Assembly of Finite Element Methods on Graphics

Processors. IJNME, 2009.

Create and classify several GPU FEM assembly algorithms.

Identification of optimizations and limitations of each
algorithm.

Optimal method depends on the element:

Memory requirements of element kernels.
Computational requirements of element kernels.

Precomputation algorithms and support data structures.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of Finite Elements on Graphics Processors. GPU Gems. Preprint.

Applying the methods to a high-performance FEM application.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 21 / 28

FEM Conclusion

C. Cecka, A. Lew, E. Darve, Assembly of Finite Element Methods on Graphics

Processors. IJNME, 2009.

Create and classify several GPU FEM assembly algorithms.

Identification of optimizations and limitations of each
algorithm.

Optimal method depends on the element:

Memory requirements of element kernels.
Computational requirements of element kernels.

Precomputation algorithms and support data structures.

C. Cecka, A. Lew, E. Darve. Application of Assembly, Solution, and

Visualization of Finite Elements on Graphics Processors. GPU Gems. Preprint.

Applying the methods to a high-performance FEM application.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 21 / 28

FMM GPU Algorithms

Implement the M2L operation of a generalized FMM

Know the structure and topology
Leave the transfer matrix as arbitrary

M2L stage:

L(O) :=
∑

S∈I(O)

D(O,S) M(S)

316 Transfer Matrices
|I(O)| ≤ 189

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 22 / 28

FMM GPU Algorithms

Implement the M2L operation of a generalized FMM

Know the structure and topology
Leave the transfer matrix as arbitrary

M2L stage:

L(O) :=
∑

S∈I(O)

D(O,S) M(S)

316 Transfer Matrices
|I(O)| ≤ 189

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 22 / 28

FMM GPU Algorithms

Implement the M2L operation of a generalized FMM

Know the structure and topology
Leave the transfer matrix as arbitrary

M2L stage:

L(O) :=
∑

S∈I(O)

D(O,S) M(S)

316 Transfer Matrices
|I(O)| ≤ 189

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 22 / 28

FMM GPU Algorithms

Implement the M2L operation of a generalized FMM

Know the structure and topology
Leave the transfer matrix as arbitrary

M2L stage:

L(O) :=
∑

S∈I(O)

D(O,S) M(S)

316 Transfer Matrices
|I(O)| ≤ 189

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 22 / 28

FMM GPU Algorithms

y

x

O O’

O’O’N

S

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 23 / 28

Basic Algorithm

Block = Observation Cell O

Thread = Li

For all S ∈ I(O)

Read D(S ,O)
Read M(S)

Li+ = D
(O,S)
ij Mj(S)

Write Li

per observation cell
Read M-data [word] 189r
Read D-data [word] 189r2

Write L-data [word] r
Operation counts [flop] 189r(2r − 1)
Flop-to-word ratio [flop/word] 1.9 for r = 32 (n = 4)

2.0 for r = 256 (n = 8)

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 24 / 28

Basic Algorithm

Block = Observation Cell O

Thread = Li

For all S ∈ I(O)

Read D(S ,O)
Read M(S)

Li+ = D
(O,S)
ij Mj(S)

Write Li

per observation cell
Read M-data [word] 189r
Read D-data [word] 189r2

Write L-data [word] r
Operation counts [flop] 189r(2r − 1)
Flop-to-word ratio [flop/word] 1.9 for r = 32 (n = 4)

2.0 for r = 256 (n = 8)

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 24 / 28

Basic Algorithm

Block = Observation Cell O

Thread = Li

For all S ∈ I(O)
Read D(S ,O)
Read M(S)

Li+ = D
(O,S)
ij Mj(S)

Write Li

per observation cell
Read M-data [word] 189r
Read D-data [word] 189r2

Write L-data [word] r
Operation counts [flop] 189r(2r − 1)
Flop-to-word ratio [flop/word] 1.9 for r = 32 (n = 4)

2.0 for r = 256 (n = 8)

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 24 / 28

Basic Algorithm

Block = Observation Cell O

Thread = Li

For all S ∈ I(O)
Read D(S ,O)
Read M(S)

Li+ = D
(O,S)
ij Mj(S)

Write Li

per observation cell
Read M-data [word] 189r
Read D-data [word] 189r2

Write L-data [word] r
Operation counts [flop] 189r(2r − 1)
Flop-to-word ratio [flop/word] 1.9 for r = 32 (n = 4)

2.0 for r = 256 (n = 8)

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 24 / 28

Basic Algorithm

Block = Observation Cell O

Thread = Li

For all S ∈ I(O)
Read D(S ,O)
Read M(S)

Li+ = D
(O,S)
ij Mj(S)

Write Li

per observation cell
Read M-data [word] 189r
Read D-data [word] 189r2

Write L-data [word] r
Operation counts [flop] 189r(2r − 1)
Flop-to-word ratio [flop/word] 1.9 for r = 32 (n = 4)

2.0 for r = 256 (n = 8)

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 24 / 28

Blocking Siblings

Iterate over clusters instead of cells

Iterate over transfer class
Reuse the D matrix

Per observation cluster Per observation cell
Read M-data [word] 8 · 26 · r 26r

Read D-data [word] 26 · 27 · r2 26·27
8

r2

Read/Write L-data [word] 8 · 26 · r 26r
Operation counts [flop] 8 · 189 · r(2r − 1) 189r(2r − 1)
Flop-to-word ratio [flop/word] 4.2 for r = 32

4.3 for r = 256

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 25 / 28

Blocking Siblings

Iterate over clusters instead of cells

Iterate over transfer class
Reuse the D matrix

Per observation cluster Per observation cell
Read M-data [word] 8 · 26 · r 26r

Read D-data [word] 26 · 27 · r2 26·27
8

r2

Read/Write L-data [word] 8 · 26 · r 26r
Operation counts [flop] 8 · 189 · r(2r − 1) 189r(2r − 1)
Flop-to-word ratio [flop/word] 4.2 for r = 32

4.3 for r = 256

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 25 / 28

Blocking Siblings

Iterate over clusters instead of cells
Iterate over transfer class
Reuse the D matrix

Per observation cluster Per observation cell
Read M-data [word] 8 · 26 · r 26r

Read D-data [word] 26 · 27 · r2 26·27
8

r2

Read/Write L-data [word] 8 · 26 · r 26r
Operation counts [flop] 8 · 189 · r(2r − 1) 189r(2r − 1)
Flop-to-word ratio [flop/word] 4.2 for r = 32

4.3 for r = 256

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 25 / 28

Chunking Clusters

Level 3

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 4

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 2

x

z

y

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Parallel in the observation cell

Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory
Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

Level 3

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 4

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 2

x

z

y

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Parallel in the observation cell

Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory
Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

Level 3

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 4

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 2

x

z

y

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Parallel in the observation cell

Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory

Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

Level 3

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 4

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Level 2

x

z

y

c
h
u
n
k

c
lu

s
te

r
c
e
ll

Parallel in the observation cell

Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory

Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

Store 6x6x6 data

into a shared-memory

array according to

sibling-index

index 012x12x12

M-data

for a chunk

of size 4

index 1

index 2

index 3 ...

ξ
η

ζ

(5,0,0)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

(ξ,η,ζ)=(0,0,0)

ζ=0

36
37

38
39

40
41

42
43

44
45

46
47

48
54

60
66

ζ=1
49

55
61

67

ζ=2

ζ=5

White numbers denote

the offset from the

baseaddress

215 (5,5,5)

Cluster

x
y

z

...

Data layout

Parallel in the observation cell
Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory
Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

Store 6x6x6 data

into a shared-memory

array according to

sibling-index

index 012x12x12

M-data

for a chunk

of size 4

index 1

index 2

index 3 ...

ξ
η

ζ

(5,0,0)

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

28
29

30
31

32
33

34
35

(ξ,η,ζ)=(0,0,0)

ζ=0

36
37

38
39

40
41

42
43

44
45

46
47

48
54

60
66

ζ=1
49

55
61

67

ζ=2

ζ=5

White numbers denote

the offset from the

baseaddress

215 (5,5,5)

Cluster

x
y

z

...

Data layout

Parallel in the observation cell
Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory
Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

f

f

f

ζ=0 ζ=1 ζ=2 ζ=3

0 1 2 3 4 5
6 7 8 9 a b
c d e 0 1
2 3 4 5 6 7
8 9 a b c d
e 0 1 2 3 2 3

4 5
6 7

8 9

a b
c d

e

0 1e

4 5 6 7
a b c d
0 1 2 3

8 9

4 5 6 7 a b

0 1c d e f

c d e

ζ=4 ζ=5

0 1 2 3 4 5

e f 0 1 2 3 2 3

8 94 5 6 7

4 5 6 7

ξ
η

ζ

M-data for

a sibling-index

in 6x6x6

shared-memory

array
4x4x4 data requested

by another M2L-vector

4x4x4 data requested

by a M2L-vector

ξ

η

0 1 2 3

c d e f

2 3 4 5 6 7

4 5 6 7

0 1 2 3

8 9 e f

c d e f

8 9 a b

0 1a b

8 9 a b

4 5 6 7

c d

η=0

η=1

η=2

η=3

HW0

HW1

HW2

HW3

6 7 8 9 a b c d 2 3 4 5e f 0 1

6 7

c d8 9 a b

8 9 a b

a
0

e
4

2 3 4 5
8 9 a b

a b c d
0 1 2 3c d

e 2 3
4 5

6 7

8 96 7
0 1

6 7 8 9 a b
c d e f 0 1
2 3 4 5 6 7
8 9 a b c d

4 5
6 7 a b
c d

e f

0 1e f
8 9

8 9
b e
1

2 3

4 52 3

0 1
5 6 7

c d

f 0 1 2

b c d e

1 2 3 4 5 6

3 4 5 6

f 0 1 2

7 8 d e

b c d e

7 8 9 a

f 09 a

7 8 9 a

3 4 5 6

b c

5 6 7 8 9 a b c 1 2 3 4d e f 0

η=1

η=2

η=3

η=4

Bank numbers for 6x6 data in each are given as follows:

16 threads in HW0 can access bank-freely

Assign half-warps 0 to 3

ζ

f

f

f

f

f

Parallel in the observation cell
Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory
Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

Chunking Clusters

per chunk of size B per observation cell

Read M-data [word] (2B + 4)3 · r · P (B+2)3P

B3 r

Read D-data [word] 316 · r · r
P

· P 316
8B3 r2

Read/Write L-data [word] 2 · 8B3 · r · r
P

· P 2r2

Operation counts [flop] 8B3 · 189 · r
P

(2r − 1) · P 189r(2r − 1)

Flop-to-word ratio [flop/word] 108 for r = 32, B = 4, P = 8
133 for r = 256, B = 4, P = 16

Parallel in the observation cell

Iterate over i and j of the matrix

Read sibling-equivalent Mj into shared memory (plus ghosts)
Read all 316 Dij into shared memory
Perform the 189 interactions for each observation cell

Can coalesce Mj reads
Can prevent shared memory bank conflicts

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 26 / 28

FMM Performance

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 27 / 28

Summary

Domain specific language which is connectivity and platform
aware.

By providing a feature set and restrictions, it is analyzable.

FEM assemblies on GPU which are connectivity aware and
kernel independent.

FMM M2L computations on GPU designed to address
connectivity and remain kernel independent.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 28 / 28

Summary

Domain specific language which is connectivity and platform
aware.

By providing a feature set and restrictions, it is analyzable.

FEM assemblies on GPU which are connectivity aware and
kernel independent.

FMM M2L computations on GPU designed to address
connectivity and remain kernel independent.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 28 / 28

Summary

Domain specific language which is connectivity and platform
aware.

By providing a feature set and restrictions, it is analyzable.

FEM assemblies on GPU which are connectivity aware and
kernel independent.

FMM M2L computations on GPU designed to address
connectivity and remain kernel independent.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 28 / 28

Summary

Domain specific language which is connectivity and platform
aware.

By providing a feature set and restrictions, it is analyzable.

FEM assemblies on GPU which are connectivity aware and
kernel independent.

FMM M2L computations on GPU designed to address
connectivity and remain kernel independent.

Cecka, Takahashi, Lew, Darve FEM/FMM on GPU 28 / 28

	Motivation
	FEM Assembly
	GPU Assembly
	LocalElem
	GlobalNZ
	SharedNZ
	Scatter and Reduction Arrays

	Results
	Application
	Conclusion
	FMM GPU

