Towards a complete FEM-based simulation toolkit on GPUs: Geometric Multigrid solvers

Markus Geveler, Dirk Ribbrock, Dominik Göddeke, Peter Zajac, Stefan Turek

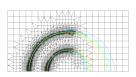
> Institut für Angewandte Mathematik TU Dortmund, Germany markus.geveler@math.tu-dortmund.de

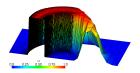
ParCFD 11 Barcelona, May 18, 2011

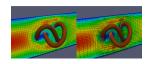
Motivation

FEM

- highly accurate for solving PDEs:
 - high order (non-conforming) FEs
 - arbitrarily unstructured grids to resolve complex geometries
 - grid adaptivity
 - Pressure-Schur-Complement Preconditioning
 - ...
- in connection with Geometric Multigrid solvers:
 - convergence rates indepent of mesh width h.
 - superlinear convergence effect possible (→ high order FE spaces)





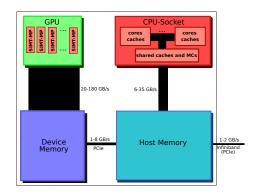


 \rightarrow Finite Element Geometric Multigrid enhances numerical efficiency.

Motivation

GPUs

- high on-chip memory bandwidth
- maximisation of the overall throughput of a large set of tasks
- parallelisation techniques for FEM software are being explored
- $lue{}$ stronger smoothers are still an issue ightarrow SPAI, ILU
- complete Geometric
 Multigrid solvers haven't had much attention yet



But: bare 'MachoFlop'-performance does not count! Today: Realising FE-gMG on the GPU \rightarrow hardware-oriented numerics

Idea: One performance-critical kernel: SpMV

- coarse-grid solver: Conjugate Gradients
- smoothers: based on preconditioned Richardson iteration
- defect calculations

What's left

- some BLAS-1 (dot-product, norm, ...)
- $lue{grid transfer}
 ightarrow \mathsf{can} \ \mathsf{be} \ \mathsf{reduced} \ \mathsf{to} \ \mathsf{SpMV} \ \mathsf{too} \ \mathsf{(later)}$

Benefits

- solver must be implemented only once
- oblivious of FE space and domain dimension
- performance tuning reduced to one kernel

Grid transfers

- lacktriangle chose the standard Lagrange bases for two consecutively refined Q_k finite element spaces V_{2h} and V_h
- function $u_{2h} \in V_{2h}$ can be interpolated in order to prolongate it

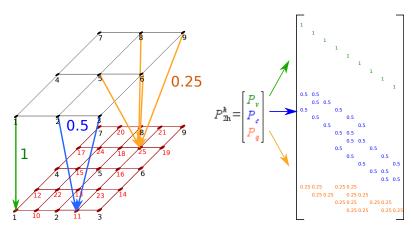
$$u_h := \sum_{i=1}^m x_i \cdot \varphi_h^{(i)}, \quad x_i := u_{2h}(\xi_h^{(i)})$$

• for the basis functions of V_{2h} and $u_{2h} = \sum_{j=1}^n y_j \cdot \varphi_{2h}^{(j)}$ with coefficient vector y, we can write the prolongation as

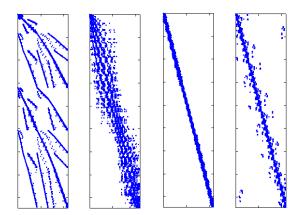
$$u_h := \sum_{i=1}^m x_i \cdot \varphi_h^{(i)}, \quad x := P_{2h}^h \cdot y$$

 $\qquad \text{restriction matrix } R_h^{2h} = (P_{2h}^h)^T$

Grid transfer: Simplified example - 2D, \mathcal{Q}_1 on regular grid



Grid transfer: Prolongation matrix examples



- left to right: 2-Level, Cuthill McKee, Coordinate-based and Hierarchical orderings
- sparsity pattern (and bandwidth) depends on DOF numbering technique → performance

Implementation

Sparse matrix-vector multiply on the GPU: ELLPACK-R

- store sparse matrix S in two arrays A (non-zeros in column-major order) and j (column index for each entry in A)
- \blacksquare A has size (#rows in $S)\times$ (maximum number of non-zeros in any row of S)
- shorter rows are padded with zeros
- additional array rl to store effective count of non-zeros in every row without the padding-zeros (stop computation on a row after the actual non-zeros)

$$S = \begin{bmatrix} 1 & 7 & 0 & 0 \\ 0 & 2 & 8 & 0 \\ 5 & 0 & 3 & 9 \\ 0 & 6 & 0 & 4 \end{bmatrix} \quad \Rightarrow \quad \mathbf{A} = \begin{bmatrix} 1 & 7 & * \\ 2 & 8 & * \\ 5 & 3 & 9 \\ 6 & 4 & * \end{bmatrix} \mathbf{j} = \begin{bmatrix} 0 & 1 & * \\ 1 & 2 & * \\ 0 & 2 & 3 \\ 1 & 3 & * \end{bmatrix} \mathbf{rl} = \begin{bmatrix} 2 \\ 2 \\ 3 \\ 2 \end{bmatrix}$$

Implementation

Sparse matrix-vector multiply on the GPU

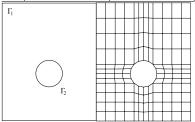
$$y_i = \sum_{nz=0}^{rl_i} A_{i,nz} * x_{j_{nz}}$$

- based on the ELLPACK-R format
- $\mathbf{y} = A\mathbf{x}$ can be performed by computing each entry y_i of the result vector \mathbf{y} independently (one GPU-thread per y_i)
- lacksquare regular access pattern on data of f y and A
- lacksquare access pattern on f x depends highly on sparsity pattern of A
- data access to all three arrays is fully coalesced due to column-major ordering
- x-values can be cached (texture-cache or L2 on FERMI)
- no synchronisation between threads necessary
- no branch divergence

Benchmark setup

$$\begin{cases}
-\Delta u = 1, & \mathbf{x} \in \Omega \\
u = 0, & \mathbf{x} \in \Gamma_1 \\
u = 1, & \mathbf{x} \in \Gamma_2
\end{cases}$$

	Q_1		Q_2	
L	N	non-zeros	N	non-zeros
4	576	4552	2176	32192
5	2176	18208	8448	128768
6	8448	72832	33280	515072
7	33280	291328	132096	2078720
8	132096	1172480	526336	8351744
9	526336	4704256	2101248	33480704
10	2101248	18845696	-	-



- Poisson problem as a fundamental component in many practical situations
- different FE spaces
- different DOF numbering techniques
- Jacobi preconditioning, V-cycle
- Intel Core i7 980 Gulftown hexacore workstation / NVIDIA Fermi GPU (Tesla C2070)

In addition: stronger preconditioning with SPAI

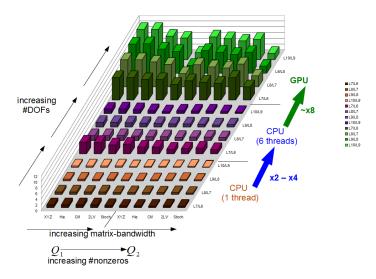
$$||I - MA||_F^2 = \sum_{k=1}^n ||e_k^{\mathrm{T}} - m_k^{\mathrm{T}}A||_2^2 = \sum_{k=1}^n ||A^{\mathrm{T}}m_k - e_k||_2^2$$

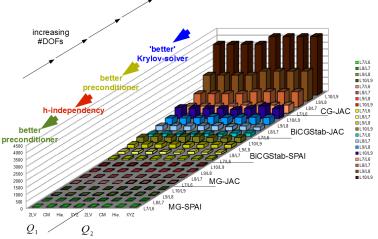
where e_k is the k-th unit-vector and m_k is the k-th row of M. \to for n columns of $M \to n$ least squares opt.-problems:

$$min_{m_k} \parallel A^{\mathrm{T}} m_k - e_k \parallel_2, \ k = 1, \dots n.$$

 sparsity-pattern of the stiffness-matrix is used for pattern of preconditioner

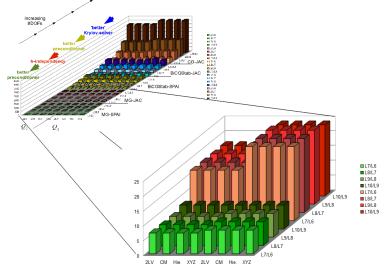
Sparse matrix-vector multiply on the GPU





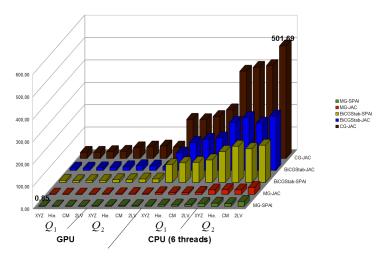
- ightharpoonup potential degradation of $\times 1/1000$
- → hardware may offer an order of magnitude speedup

FE-gMG: a closer look at preconditioning



 \blacksquare \to SPAI offers $\times 1/2$; SPAI+ Q_2 works well

Execution times for finest discretisation and reasonable numbering-techniques: CPU, GPU



Geometric Multigrid

- mission accomplished: SpMV performance transported to solver level
- clever sorting may pay off
- gap between
 - weak solvers + unthoughtful DOF-ordering + unoptimised kernels (with respect to hardware) and
 - FE-gMG + clever reordering + hardware-acceleration
- is huge
- current design oblivious of FE-spaces, domain-dimension, preconditioning, grid properties, ...

Conclusion

Summary

- FE-gMG is efficient and flexible
- GPU vs. multicore CPU: close to one order of magnitude speedup
- sophisticated (sparse) preconditioners make the difference
- single-node hardware-oriented FE-gMG is ready from the solver-side, but ...

Future work

- assembly of preconditioners, system matrices, transfer-matrices still unresolved, especially for unstructured grids
- cross-effects with resorting the degrees of freedom in combination with a specific matrix storage format and associated SpMV kernel
- other related data-parallel operations: adaptive grid-deformation, ...

Acknowledgements

Supported by BMBF, HPC Software für skalierbare Parallelrechner: SKALB project 01IH08003D.