
Towards a complete FEM-based simulation toolkit on GPUs:
Geometric Multigrid solvers

M. Geveler∗, D. Ribbrock∗, D. Göddeke∗, P. Zajac∗, S. Turek∗

Corresponding author: markus.geveler@math.tu-dortmund.de

∗ Institute of Applied Mathematics, TU Dortmund University, Germany.

Abstract: We describe a GPU- and multicore-oriented implementation tech-
nique for a key component of finite element based simulation toolkits for par-
tial differential equations on unstructured grids: Geometric Multigrid solvers.
We use efficient sparse matrix-vector multiplications throughout the solver
pipeline: within the coarse-grid solver, smoothers and even grid transfers. Our
implementation can handle several low- and high-order finite element spaces
in 2D and 3D, and for representative benchmark problems, we achieve close
to an order of magnitude speedup on a single GPU over a multithreaded CPU
code. In addition we present preliminary results for experiments with strong
smoothers for unstructured problems on the GPU, aiming at augmenting nu-
merical and computational efficiency simultaneously.

Keywords: unstructured grids, multigrid solvers, sparse matrices, finite
elements, preconditioners, GPU computing

1 Introduction

Finite element methods (FEM) offer a number of highly accurate instruments for solving par-
tial differential equations (PDEs) ranging from high-order and non-conforming elements over
arbitrarily unstructured geometries and adaptivity up to Pressure-Schur-Complement Precondi-
tioning [1]. Geometric Multigrid solvers can solve the arising sparse linear systems in a number
of iterations that is independent of the grid size and in combination with high-order Finite
Elements, superlinear convergence-effects can be obtained [2].

Over the past several years, graphics processors (GPUs) have made the transition to a
valuable and increasingly accepted general purpose computing resource, both on standalone
workstations and in large-scale HPC installations. The main reason why GPUs excel at many
HPC workloads that provide ample parallelism is that their design is fundamentally different
from commodity CPU architectures: Instead of minimising the latency of a single task, they
maximise the overall throughput of a large set of tasks and the chip’s ratio of functional units
to control logic is much more favourable. For memory-bound problems, the GPU boards’ more
hard-wired memory lanes allow for a higher signal quality, and thus more aggregated memory
bandwidth. We refer to a recent article by Garland and Kirk [3] for technical details and a
concise description of the hardware-software model of throughput-oriented computing. Paralleli-
sation techniques (on the core-, chip-, and node-level) for FEM software and the hardware-aware

1



implementation of their components have been recently studied, especially targeting accelera-
tion by GPUs [4] but the tailoring of preconditioners for unstructured problems to fine grained
parallel execution remains an open issue.

2 Solution approach

We evaluate the performance of an implementation technique for FE-gMG (finite element Ge-
ometric Multigrid) solvers for PDE problems discretised on unstructured grids. Our target
architectures are fine-grained (manycore) GPUs - at this point, we focus entirely on the solver
performance, evaluating it for different unstructured grids and finite element spaces. This is
justified since in many practical scenarios, the linear solver often dominates the total execution
time.

The solver’s performance-critical components are based on cascades of sparse matrix-vector
multiplications (SpMV): As a key component for multigrid, our smoother is a preconditioned
Richardson iteration, using SpMV to plug in the preconditioner and for defect calculation. Fur-
thermore, a preconditioned Conjugate Gradient coarse grid solver is employed which is also com-
posed solely of SpMV and vector-vector operations. Finally, grid transfer can be implemented
by means of SpMV, if we chose the standard Lagrange bases for two consecutively refined Qk

finite element spaces V2h and Vh. In this case, we can interpolate any function u2h ∈ V2h in
order to prolongate it to Vh and the interpolant uh can be calculated by evaluating u2h in the
corresponding nodal points ξ(i)h of the basis function ϕ(i)

h :

uh :=

m∑
i=1

xi · ϕ(i)
h , xi := u2h(ξ

(i)
h )

For the basis functions of V2h and u2h =
∑n

j=1 yj · ϕ
(j)
2h with coefficient vector y, we can write

the prolongation analogously as

uh :=

m∑
i=1

xi · ϕ(i)
h , x := P h

2h · y

which results in an m × n prolongation matrix (P h
2h)ij = ϕ

(j)
2h (ξ

(i)
h ) which can be transposed to

retrieve the corresponding restriction matrix. Figure 1(a) and (b) depict a basic (structured)
example for a 2D quadrilateral grid and a two-level numbering scheme. In addition, Figure 1(c)
exemplarily depicts the sparsity patterns of real-world prolongation matrices stemming from an
unstructured grid. The storage demand of the prolongation matrix is bounded by the memory
requirements of the discrete Laplace Operator on Vh and, as can be seen, the bandwidth strongly
depends on the numbering technique used to label the degrees of freedom, which of course also
holds true for the associated system matrices.

This simple reduction to one performance-critical kernel within the multigrid solver has
surprisingly many beneficial properties: The multigrid solver needs to be implemented only
once, and is completely oblivious of the underlying finite element space, and even oblivious of
the dimension of the computational domain (2D, 3D). Furthermore, our implementation replaces
many specialised kernels with one central, well-understood and well-optimised parallel kernel,
which is favourable in terms of software maintainability and the adoption of GPUs in multigrid
and finite element codes.



1 2 3

1 2 3

4 5 6

7 8 9

10 11

12 13 14

15 16

17 18 19

20 21

22 23

24 25

4 5 6

7 8 9

1

0.5

0.25

(a) 2D Q1 interpolation: Each vertex of the fine
grid corresponds to either a vertex, an edge mid-
point or a quadrilateral midpoint in the coarse
grid

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

0.5 0.5

1

1

1

1

1

1

1

1

1

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

(b) resulting block prolongation matrix for two-
level numbering: Node vertices of the coarse grid
need no interpolation resulting in an identity ma-
trix block; coarse edges’ corner vertices contribute
with weight 1/2 to interpolation for coarse edge
midpoints; corner vertices of coarse quadrilaterals
are represented with weight 1/4 in the prolonga-
tion matrix

(c) sparsity patterns of real-world prolongation matrices for an unstructured grid
and different strategies for the numbering of the degrees of freedom (from left to
right: 2LV, CM, XYZ and HIE, see Section 4)

Figure 1: Construction of prolongation matrices and sparsity pattern examples



3 Implementation

We do not utilise the ‘standard’ CSR format, but rather the ELLPACK-R format proposed by
Vazques et al. [5]. In our experience, ELLPACK(-R) leads to significantly higher computational
throughput, even for sequential code.

Based on the ELLPACK-R format, the sparse matrix-vector multiplication y = Ax can be
performed by computing each entry yi of the result vector y independently. In general, this
results in a comparatively regular access pattern on the data of y and A. In contrast, the access
pattern on x depends highly on the non-zero structure of A.

The ELLPACK-R based SpMV kernel is mapped to the GPU architecture by launching one
device thread for the calculation of an entry yi, resulting in fully coalesced memory access to the
matrix and the vector y due to the column-major ordering used. The access to the array x can
be cached via the texture cache on the GPU to improve efficiency. On the FERMI generation of
GPUs, the device-wide L2-cache is well utilised. No synchronisation between threads is necessary.
The threads in one CUDA warp do not diverge because flow instructions are not necessary which
would cause serialisation. Every warp finishes execution directly when all non-zero entries in the
rows of its threads are completely processed. Because of this, only warps with a high relative
non-zero count in their rows execute longer compared to average warps.

4 Benchmark setup and performance results

As a representative of an elliptic PDE, which is a key component in many practical situations,
we employ a Poisson problem on a domain with two boundary components: One rectangular
outer boundary component Γ1 and one for the inner boundary wrapping a circle (Γ2) covered by
an unstructured grid, see Figure 2(a). We configure our multigrid solver to perform a V-cycle
always traversing the full mesh hierarchy. Coarse grid problems are treated with a Conjugate
Gradient solver using Jacobi preconditioning, it is configured to reduce the initial residual by
two digits. In addition, we use two fundamentally different smoothers: Simple Jacobi smoothing
on the one hand and, experimentally, preassembled Sparse Approximate Inverses [6] as strong
preconditioners. All benchmarks are performed on an Intel Core i7 920 quadcore workstation
including an NVIDIA GeForce GTX 285 GPU and we use different numbering techniques [7],
two-level numbering (2LV), the popular Cuthill McKee numbering, CM, the XYZ technique,
randomly permuted numbering (STO) and finally, a hierarchical approach HIE is used, see
Figure 1. Problem sizes and resulting execution times are collected in the tables in Figure 2(b)
and (c).

Our results show that the solution times can be dropped by almost one order of magnitude
when using the GPU instead of the multicore CPU. In addition, the ordering of the degrees
of freedom has a clear impact on the overall performance. For instance, using the best num-
bering technique (for this problem the XYZ sorting) provides a speedup factor of two over
the HIE technique. Finally, using a sophisticated SPAI preconditioner gives a good return in
reducing the computation time regardless of the higher computational costs due to the ’denser’
preconditioning matrix (by almost halving the needed number of iterations).

5 Conclusion and future work

With our current work, We have shown that the approach of relying on SpMV within the
Geometric Multigrid solver is efficient and flexible. Our results show that future efforts should
include the theoretical and practical examination of strong smoothers for unstructured problems



(a) grid of the bench-
mark problem

Q1 Q2
L N non-zeros N non-zeros
4 576 4552 2176 32192
5 2176 18208 8448 128768
6 8448 72832 33280 515072
7 33280 291328 132096 2078720
8 132096 1172480 526336 8351744
9 526336 4704256 2101248 33480704
10 2101248 18845696 - -

(b) #degrees of freedom (N) and #non-zeros
for the different refinement levels

Q1 Q2
Jacobi SPAI Jacobi SPAI

Sort L CPU GPU CPU GPU CPU GPU CPU GPU

2LV

6 - - - - 0.50 0.18 0.33 0.11
7 0.11 0.09 0.10 0.07 1.63 0.38 1.22 0.25
8 0.47 0.18 0.39 0.13 8.27 0.97 5.69 0.79
9 2.30 0.42 1.68 0.34 - - - -

CM

6 - - - - 0.31 0.17 0.23 0.11
7 0.12 0.10 0.10 0.07 1.35 0.36 0.94 0.24
8 0.45 0.19 0.37 0.12 6.10 1.04 3.56 0.68
9 1.97 0.45 1.69 0.37 - - - -

XYZ

6 - - - - 0.25 0.15 0.16 0.08
7 0.09 0.09 0.09 0.07 1.10 0.32 0.61 0.16
8 0.44 0.17 0.36 0.12 4.61 0.84 2.50 0.48
9 1.84 0.37 1.38 0.27 - - - -

STO

6 - - - - 0.40 0.20 0.27 0.12
7 0.12 0.09 0.12 0.07 1.63 0.51 1.10 0.31
8 0.53 0.21 0.47 0.14 8.02 2.11 5.31 1.41
9 2.50 0.81 2.08 0.58 - - - -

HIE

6 - - - - 0.33 0.17 0.20 0.09
7 0.14 0.10 0.11 0.07 1.31 0.34 0.95 0.21
8 0.69 0.18 0.43 0.12 5.63 0.91 3.38 0.58
9 3.88 0.39 1.91 0.34 - - - -

(c) Total execution time (sec) for Q1 and Q2 elements and different
numbering techniques and preconditioners; the CPU results com-
prise four threads

Figure 2: Settings and results for the benchmark problem

and the cross-effects with resorting the degrees of freedom in combination with a specific matrix
storage format and associated SpMV kernel. Other formats for sparse matrices are going to be
examined in order to enhance the technique. In a further step, the assembly of the stiffness- and
interpolation matrices as well as the preconditioners will be taken into account and optimised
for the GPU, as well as other data parallel operations connected to the solution process, like
adaptive grid deformation routines which include ray-tracing-like search per vertex.

References

[1] S. Turek, Efficient Solvers for Incompressible Flow Problems: An Algorithmic and Compu-
tational Approach, Springer, Berlin, 1999, ISBN 3-540-65433-X.

[2] M. Köster, S. Turek, “The influence of higher order FEM discretisations on multigrid con-
vergence”, Computational Methods in Applied Mathematics, 6(2): 221–232, 2006.

[3] M. Garland, D.B. Kirk, “Understanding throughput-oriented architectures”, Commununica-
tions of the ACM, 53(11): 58–66, 2010.

[4] D. Göddeke, Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations on
GPU Clusters, PhD thesis, TU Dortmund, Faculty of Mathematics, 2010.

[5] F.M. Vazquez, G. Ortega, J.J. Fernandez, E.M. Garzon, “Improving the Performance of the
Sparse Matrix Vector Product with GPUs”, in International Conference on Computer and
Information Technology (CIT 2010), pages 1146–1151, 2010.

[6] O. Bröker, M.J. Grote, “Sparse approximate inverse smoothers for geometric and algebraic
multigrid”, Applied Numerical Mathematics, 41(1): 61–80, 2002.

[7] S. Turek, “On Ordering Strategies in a Multigrid Algorithm”, in Proc. 8th GAMM–Seminar,
Volume 41 of Notes on Numerical Fluid Mechanics, 1992.


